A Constructive Approach to Parsing with Neural Networks - The Hybrid Connectionist Parsing Method

نویسنده

  • Christel Kemke
چکیده

The concept of Dynamic Neural Networks (DNN) is a new approach within the Neural Network paradigm, which is based on the dynamic construction of Neural Networks during the processing of an input. The DNN methodology has been employed in the Hybrid Connectionist Parsing (HCP) approach, which comprises an incremental, on-line generation of a Neural Network parse tree. The HCP ensures an adequate representation and processing of recursively defined structures, like grammar-based languages. In this paper, we describe the general principles of the HCP method and some of its specific Neural Network features. We outline and discuss the use of the HCP method with respect to parallel processing of ambiguous structures, and robust parsing of extra-grammatical inputs in the context of spoken language parsing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast partial parse of natural language sentences using a connectionist method

The pattern matching capabilities of neural networks can be used to loc ate syntactic constituents of natural lan guage This paper describes a fully auto mated hybrid system using neural nets operating within a grammatic frame work It addresses the representation of language for connectionist processing and describes methods of constraining the problem size The function of the network is brie y...

متن کامل

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

Learning from errors: Using vector-based compositional semantics for parse reranking

In this paper, we address the problem of how to use semantics to improve syntactic parsing, by using a hybrid reranking method: a k-best list generated by a symbolic parser is reranked based on parsecorrectness scores given by a compositional, connectionist classifier. This classifier uses a recursive neural network to construct vector representations for phrases in a candidate parse tree in or...

متن کامل

Neurosymbolic Integration: Uniied versus Hybrid Approaches

Since the mid-1980s, researchers have been pursuing the goal of neurosymbolic integration, i.e., the construction of systems capable of both symbolic and neural processing. We distinguish two major avenues toward this goal: the uniied and the hybrid approaches. Whereas the uniied approach claims that full symbol processing functionalities can be achieved via neural networks alone, the hybrid ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002